

Training & Interoperability

Peter O'Brien Elisabeth Wintersteller Padraic Morrissey

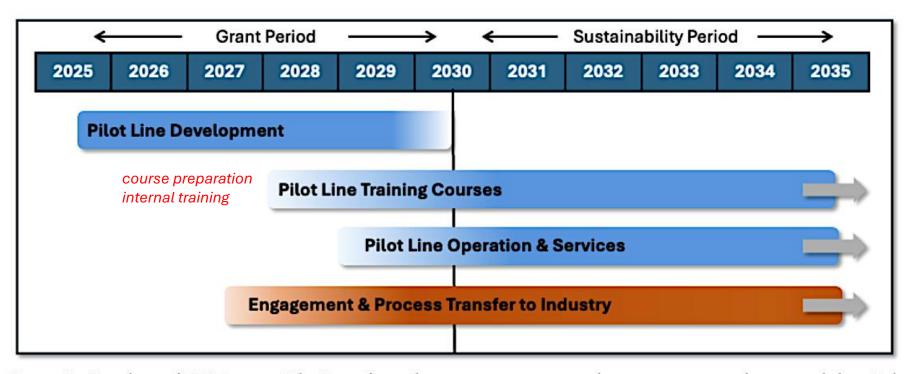
September 10th, 2025

PIXEurope Training Objectives

Objective 6: Establish highly visible and well-coordinated training and dissemination programmes. These activities will be managed by partners who have led-the-way in providing pioneering PIC training and dissemination programmes.

- A. Prepare comprehensive training courses on advanced PIC manufacturing, including online and hands-on courses. PIXEurope will prepare and deliver 28 online, 18 hands-on and specialised one-to-one training courses targeting 1000 attendees per year.
- B. Collaborate with the European Competence Centres to roll-out PIXEurope's training courses.
- C. Roll-out PIXEurope's training courses during the third year of the project.
- D. Organise Open House events, giving users an opportunity to view and evaluate Pilot Line facilities. Dedicated one-to-one visits for more detailed on-site training and consultation will also be provided.
- E. Prepare internal training courses so all Pilot Line partners are fully competent in all aspects and technical capabilities of the Pilot Line, especially for new Pilot Line hires.

PIXEurope Training Manager (Tyndall)



Elisabeth Wintersteller

PIXEurope Training Timeline

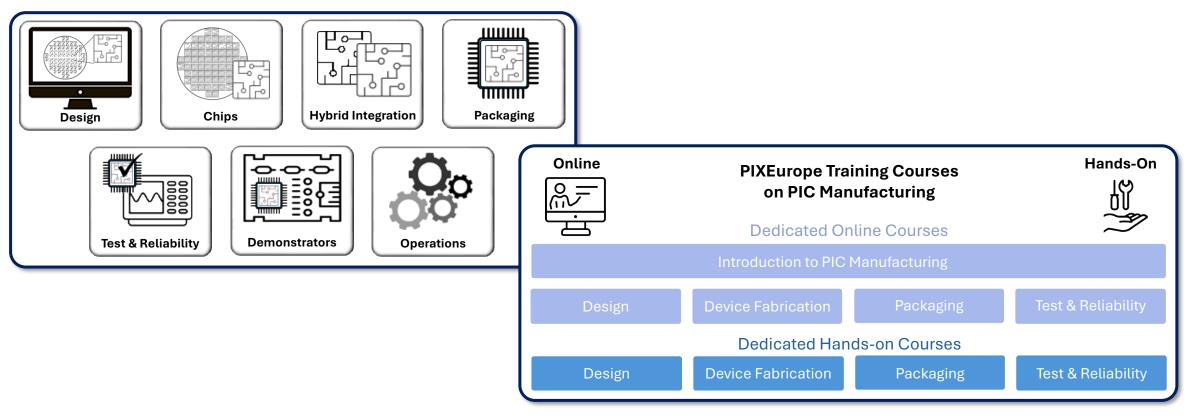
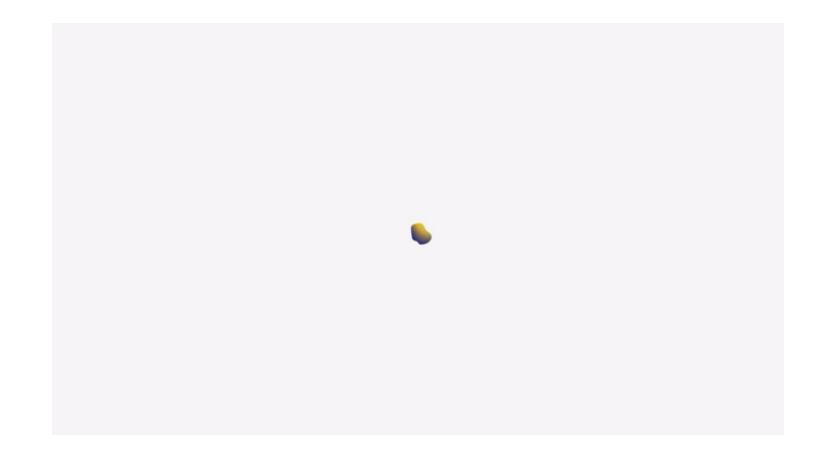


Figure 2: Timeline of PIXEurope Pilot Line from the project grant period to operations and sustainability. Pilot Line services, including delivery of training courses, will be ramped up over time, starting in year 3 and fully operational during the final year of the project grant period.

PIXEurope Training Timeline



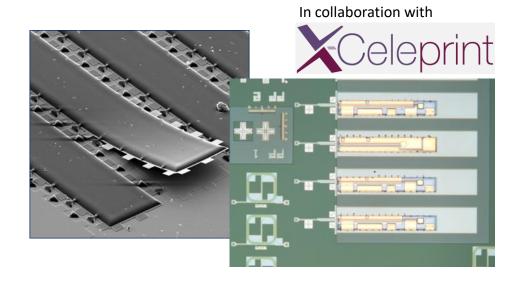
- ☐ Training courses for internal & external users on integrated photonic technologies
- Strong focus on production aspects of the technology
- Online & hands-on courses, as well as user-dedicated courses
- ☐ Complement existing research-focused training (fully address research-to-production)

PIXAPP Pilot Line Packaging Training Programme

Tyndall MTP Training Course

Micro-transfer Printing Training Course

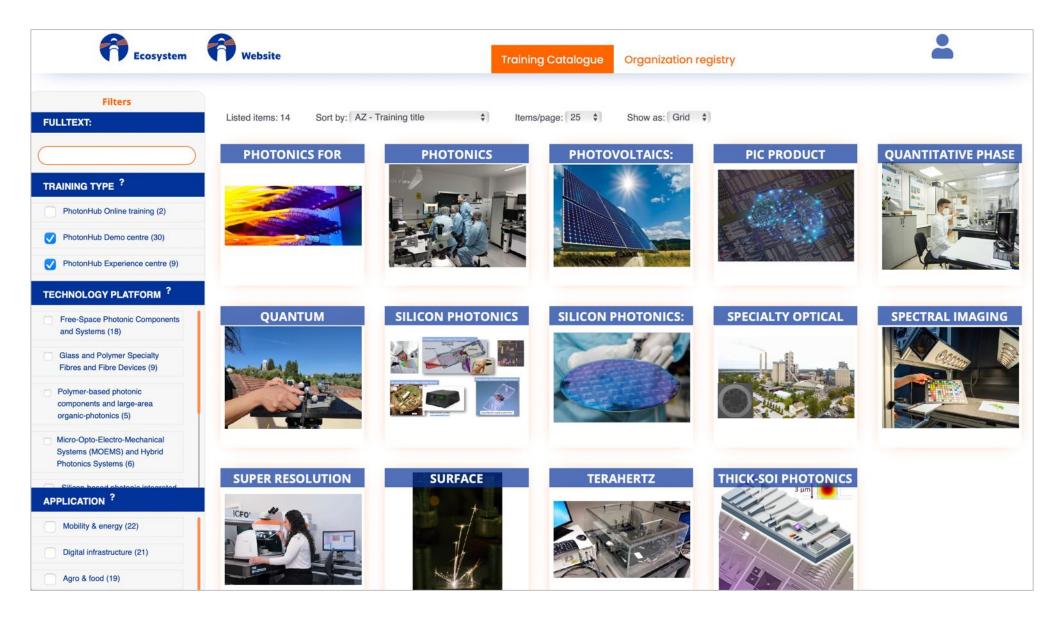
Tyndal National Institute Institution Naisiunta


Access unique training infrastructure

Introduction to machinery, mechanisms, and software exclusively designed for micro-transfer printing.

Course components:

- ✓ MTP machine and mechanisms
- ✓ Alignment guidelines
- ✓ Coupon and print
- ✓ Lab demo and fabrication visit
- ✓ InP, GaAs, GaN and Si based MTP technology



MTP course in a nutshell						
Mode of delivery	In-person lectures and lab sessions					
Level/ pre-requisites	Introductory/ None; but fundamental understanding of semiconductor technology beneficial					
Length	2 days					
No of attendees	8					

PIXEurope Training Catalogue

PIXEurope Training Centres

Partner	Country	Title		
JR	AT	Nano goes macro: Large-area micro- and nanostructuring		
IMEC	BE	Silicon Photonics for Sensing Applications		
VUB	BE	Photonics and Food		
VUB	BE	Optical Fibre Sensing Applications		
FHG_FEP	DE	OLED for Lighting and Signage Applications		
FHG_ILT	DE	Photonics in Manufacturing		
FORTH	EL	Optical Fibre Sensors for Industrial Application		
FORTH	EL	Laser-based additive micro-manufacturing for Industrial Applications		
ICC8	EL	Photonics for Telecom & Datacom applications		
AIMEN	ES	Advanced laser welding		
AIMEN	ES	Surface functionalization by laser patterning		
CARTIF	ES	Operating and digitalization of laser manufacturing cells for beginners		
ICFO	ES	Super resolution and advance microscopy imaging techniques		
Photonics Finland	F1	Spectral Imaging and its Applications		
VTT	FI	Thick-SOI photonics for sensing and imaging		
CNRS_FEMTO	FR	Fabrication and characterization of an integrated Electro-Optic modulator		
CNRS_IEMN	FR	TeraHertz spectroscopy application to solid, liquid and gaseous samples.		
CNRS_IEMN	FR	CNRS-(EMN/Photovoltaics		
CNRS_IF	FR	Institut Fresnel / Espace Photonique optical thin film platform		
CNRS_L2n	FR	Photonics for Quantum Technologies		
CNRS_LCF	FR	Optical Fibers and telecommunications		
CNRS_LP3	FR	Handle and use pulsed Lasers for additive fabrication		
Tyndall-UCC	IE	Photonics for Biomedical Applications		
CNIT	IT	mmWave Generation and Transmission Demo Center/ Title:Graphene photonics for mm-wave wireless links		
CNR_IFN	IT	Optical gas sensors for industrial applications		
CNR_INO	IT	Quantum Communication applications		
TUE	NL	PIC Product		
WUT	PL	Quantitative Phase Imaging at Cellular Level		
WUT	PL	Fiber-Optic Sensors for Structural Health and Biomedical Monitoring		
RISE	SE	Specialty Optical Fibres for sensing applications in Industry		
ORC	UK	Build your own Silicon Photonics Chip		

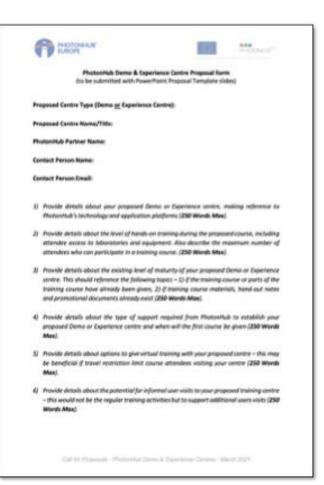
PIXEurope Training Centres

PIXEurope Training Centres

Training Proposal Documents

PowerPoint & Word Proposal Documents

PhotonHub Demo Centre


Course 01
Photonics for Biomedical Applications

Course Provider

Tyndall Institute, University College Cork, Ireland

European Photonics Innovation Academy

Training Proposal Documents

Course 01

Photonics Packaging & Integration Technologies

Course Provider

Tyndall Institute University College Cork Ireland

PHOTONHUB' European Photonics Innovation Academ

Day 1 (09:00 – 12:00)	Tyndall Orientation, Course Introduction & Packaging Tutorials (lectures)
Day 1 (14:00 – 17:00)	Laser Welding of Optical Fiber to InP Laser in 14-Pin Butterfly Package (he
Day 2 (09:00 – 12:00)	Electronic Packaging Technologies (hands-on)
Day 2 (14:00 – 17:00)	Fiber Array Packaging to Photonic Integrated Circuit (hands-on)
Day 3 (09:00 – 12:00)	Micro Optics Packaging (hands-on)
Day 3 (14:00 – 17:00)	Reliability & Failure Analysis of Photonic Devices (hands-on)

Course Trainers

European Photonics Innovation Academy

Course Director: Prof. Peter O'Brien Course Manager: Guillaume Le Palud

Packaging Tutorials: Dr. Padraic Morrissey
Optical Packaging: Dr. Kamil Gradkowski & Dr. Jun Lee
Electrical Packaging: Dr. Jun Su Lee, Marc Rensing, Noreen Nudds
Packaging Reliability: Marc Rensing

PHOTONHUB'

European Photonics Innovation Academy

Course Overview

Photonic device packaging can account for over 50% of the photonic product manufacturing cost. Therefore, it is vital that industries developing photonic-based products have an understanding of the materials, technologies and processes required to package their photonic devices.

This 3-day training course provides industry, especially those involved in photonic product development, with the fundamental technical skills in package design, assembly and reliability

Target Audience

It is desirable but not essential that course attendees have a basic understanding of photonics. The course is ideally suited to those planning to develop new photonic products, establish in-house or outsource packaging development and manufacturing.

Course Schedule

Day & Time	Training Activity
Day 1 (09:00 – 12:00)	Tyndall Orientation, Course Introduction & Packaging Tutorials (lectures)
Day 1 (14:00 – 17:00)	Laser Welding of Optical Fiber to InP Laser in 14-Pin Butterfly Package (hands-on)
Day 2 (09:00 – 12:00)	Electronic Packaging Technologies (hands-on)
Day 2 (14:00 – 17:00)	Fiber Array Packaging to Photonic Integrated Circuit (hands-on)
Day 3 (09:00 – 12:00)	Micro Optics Packaging (hands-on)
Day 3 (14:00 – 17:00)	Reliability & Failure Analysis of Photonic Devices (hands-on)

PHOTONHUB'

European Photonics Innovation Academy

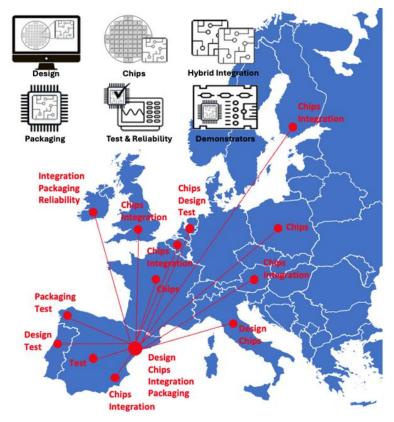
www.tyndall.ie/contact-us
 www.photonhub.eu/euphotonicsacademy

PHOTOPHUS'
European Photonics Innovation Academy

Course Equipment & Infrastructure

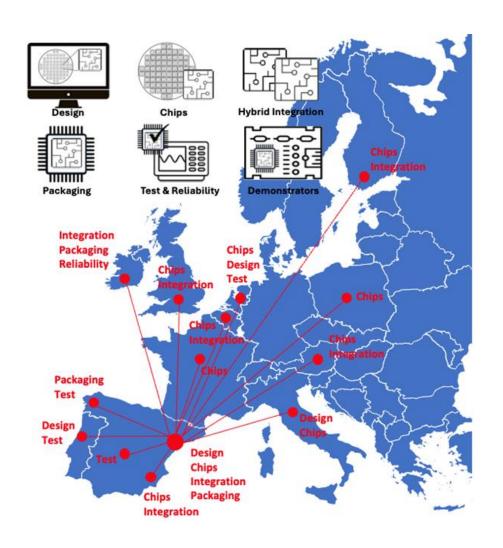
Next Steps (Training)

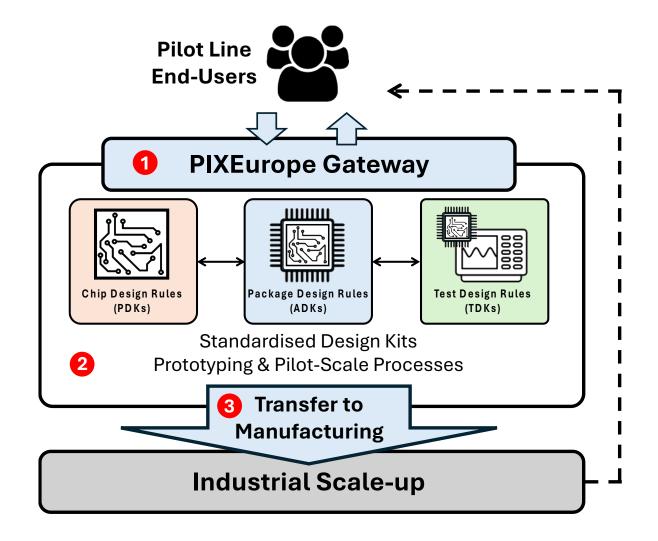
- 1. Liz to make contact with PIXEurope partner training person
- 2. Evaluate training activity, capabilities and plan of each PIXEurope partner
- 3. Select first partners who will develop training courses (online & hands-on)
- 4. Selection based on template course structure
- 5. Roll-out of first training courses
- 6. Additional partners to follow over reasonable timescale


Interoperability (the motivation)

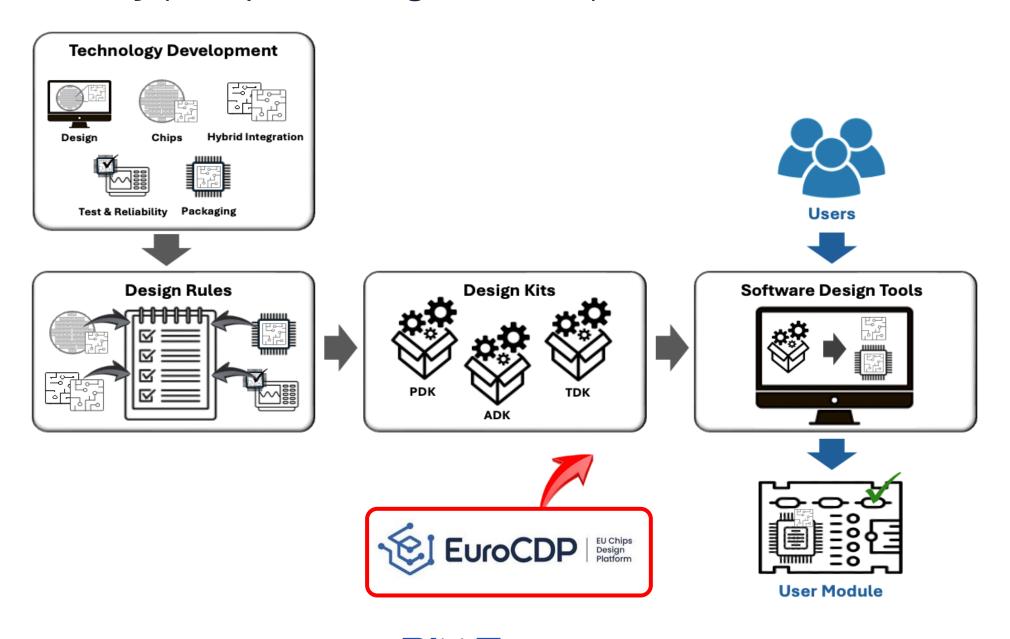
<u>Interoperability</u> activities focus on establishing and optimising the operation of the distributed Pilot Line between partners. In the project, interoperability is strongly linked with WP4 & WP9. In WP9, demonstrators to be developed between the partners in WP9 to evaluate and optimise overall operational efficiency.

Distributed Pilot Line



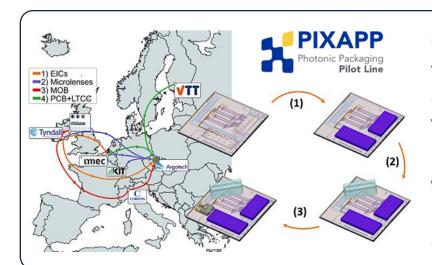


Interoperability (user access)

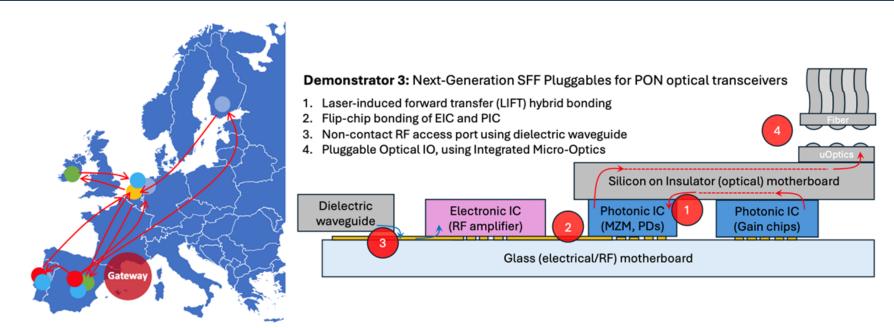


Interoperability (European Design Platform)

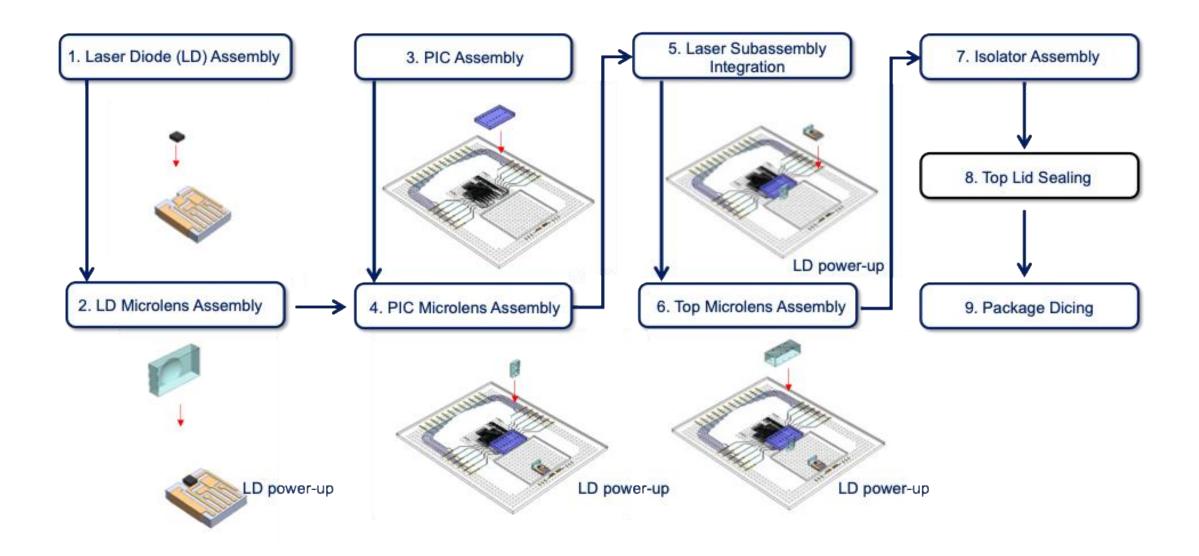
Next Steps (Interoperability)



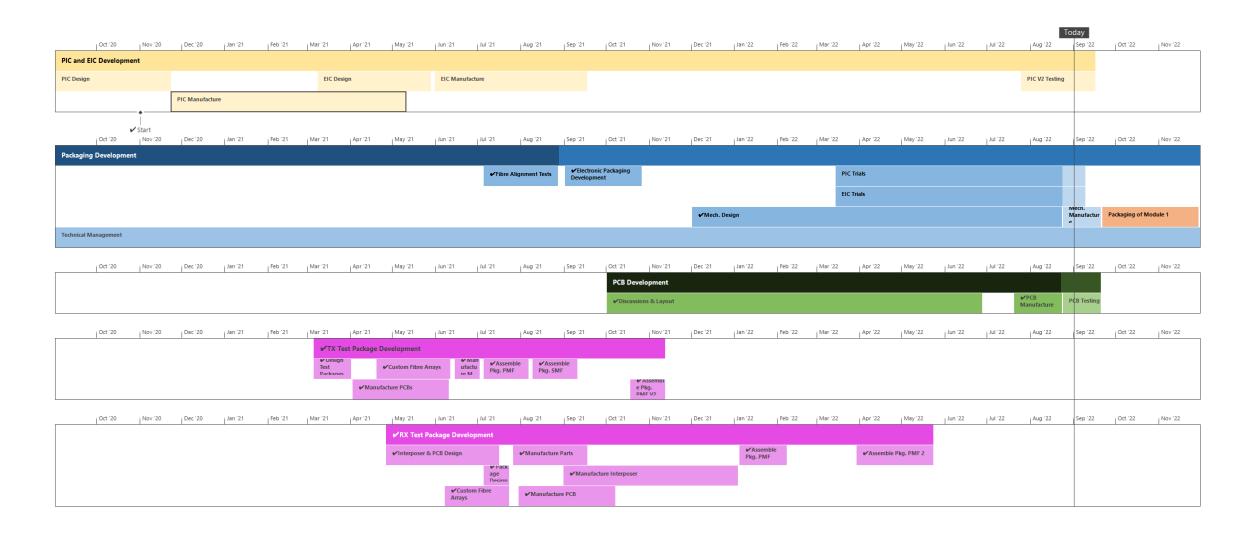
- 1. Review project demonstrator details (follow-up with relevant partners)
- 2. Prepare process flow & partner roles (draft)
- 3. Prepare Gantt chart and timelines (draft)
- 4. Identify inconsistencies in process flow/interoperability
- 5. Close collaboration with PIXEurope Gateway



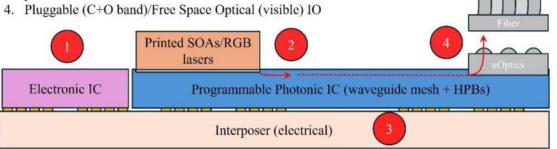
Interoperability (PIXEurope project demonstrators)


Consortium partners have significant experience managing distributed technology development, leveraging their unique capabilities to create complex integrated photonic modules. This figure shows how TNI, IMEC, and VTT previously collaborated with industry partners in the PIXAPP Pilot Line project to develop a silicon-photonic PIC-based transceiver. This experience will be invaluable in ensuring the distributed process flows between partners are efficient and well-synchronised [Bundalo, IEEE J Select Topics on Quant Elect, Vol 28, No 3, 2022].

Interoperability (demonstrator process flow)

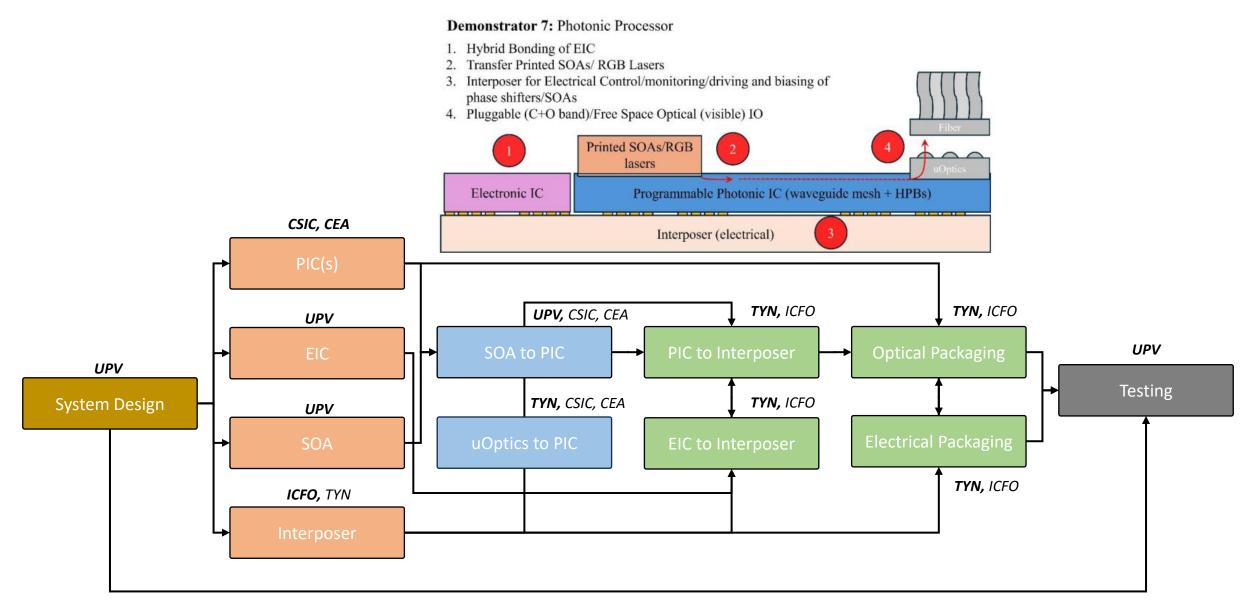


Interoperability (demonstrator Gantt chart & timeline)


Interoperability (demonstrator details)

Demo	Name	Coordinator	Design	Monolithic chips	Hybrid Integration	Packaging	Test
1	Optical Space Switch	ICFO	ICFO	UTWENTE	SAL	TNI	ICFO
2	Ultra High-Speed Coherent Transmitter	IMEC	IMEC	IMEC	IMEC	-	IMEC
3	Next-Generation SFP for PON Optical Transceivers	UC3M	UC3M	TNO, VTT, IT	TNO, IT	TNI, ICFO	UC3M, TU/e, IT
4	Visible Light Engine for Displays	TNI	ICFO	CSIC, TNI, UGENT	TNI	TNI, ICFO	ICFO
5	MIR Photonic Sensing Blocks	WUT	WUT, POLIMI, FBK, USOTON, SAL	UTWENTE, FBK, USOTON, SAL, WUT	UCAM	-	WUT
6	LiDAR Transmitter for Multi-Modal Sensing	TU/e	TU/e	TU/e	-	TNI, ICFO	TU/e
7	Programmable Photonic Processor	UPV	UPV	CSIC, CEA-LETI	UPV	TNI	UPV
8	Co-Packaged Optics & Electronics for AI	IMEC	IMEC	IMEC	IMEC, TNI	TNI, ICFO	IMEC

Demonstrator 7: Photonic Processor


- 1. Hybrid Bonding of EIC
- 2. Transfer Printed SOAs/ RGB Lasers
- 3. Interposer for Electrical Control/monitoring/driving and biasing of phase shifters/SOAs

Interoperability (demonstrator details)

Next Steps (Interoperability)

- 1. Review project demonstrator details (follow-up with relevant partners)
- 2. Prepare process flow & partner roles (draft)
- 3. Prepare Gantt chart and timelines (draft)
- 4. Identify inconsistencies in process flow/interoperability
- 5. Close collaboration with PIXEurope Gateway

Training

Elisabeth Wintersteller (elisabeth.wintersteller@tyndall.ie)

Interoperability

Padraic Morrissey (padraic.morrissey@tyndall.ie)

